核磁共振是有機化合物結構鑒定的一個重要手段
點擊次數:1950 更新時間:2021-12-28
核磁共振技術是有機物結構測定的有力手段,不破壞樣品,是一種無損檢測技術。從連續波核磁共振波譜發展為脈沖傅立葉變換波譜,從傳統一維譜到多維譜,技術不斷發展,應用領域也越廣泛。核磁共振技術在有機分子結構測定中扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質譜一起被有機化學家們稱為“四大名譜”。[2]
核磁共振譜在強磁場中,原子核發生能級分裂(能級極小:在1.41T磁場中,磁能級差約為25′10-3J),當吸收外來電磁輻射(10-9-10-10nm,4-900MHz)時,將發生核能級的躍遷----產生所謂NMR現象。射頻輻射─原子核(強磁場下,能級分裂)-----吸收──能級躍遷──NMR,與UV-vis和紅外光譜法類似,NMR也屬于吸收光譜,只是研究的對象是處于強磁場中的原子核對射頻輻射的吸收。
核磁共振現象于1946年由E.M.珀塞耳和F.布洛赫等人發現。核磁共振迅速發展成為測定有機化合物結構的有力工具。目前核磁共振與其他儀器配合,已鑒定了十幾萬種化合物。70年代以來,使用強磁場超導核磁共振儀,大大提高了儀器靈敏度,在生物學領域的應用迅速擴展。脈沖傅里葉變換核磁共振儀使得C、N等的核磁共振得到了廣泛應用。計算機解譜技術使復雜譜圖的分析成為可能。測量固體樣品的高分辨技術則是尚待解決的重大課題。
核磁共振技術在有機合成中,不僅可對反應物或產物進行結構解析和構型確定,在研究合成反應中的電荷分布及其定位效應、探討反應機理等方面也有著廣泛應用。核磁共振波譜能夠精細地表征出各個氫核或碳核的電荷分布狀況,通過研究配合物中金屬離子與配體的相互作用,從微觀層次上闡明配合物的性質與結構的關系,對有機合成反應機理的研究重要是對其產物結構的研究和動力學數據的推測來實現的
核磁共振是有機化合物結構鑒定的一個重要手段,一般根據化學位移鑒定基團;由耦合分裂峰數、偶合常數確定基團聯結關系;根據各H峰積分面積定出各基團質子比。核磁共振譜可用于化學動力學方面的研究,如分子內旋轉,化學交換等,因為它們都影響核外化學環境的狀況,從而譜圖上都應有所反映。核磁共振還用于研究聚合反應機理和高聚物序列結構。